翻訳と辞書 |
Matrix determinant lemma : ウィキペディア英語版 | Matrix determinant lemma
In mathematics, in particular linear algebra, the matrix determinant lemma〔(【引用サイトリンク】 The Matrix Reference Manual (online) )〕 computes the determinant of the sum of an invertible matrix A and the dyadic product, u vT, of a column vector u and a row vector vT. == Statement == Suppose A is an invertible square matrix and u, v are column vectors. Then the matrix determinant lemma states that : Here, uvT is the outer product of two vectors u and v. The theorem can also be stated in terms of the adjugate matrix of A: : in which case it applies whether or not the square matrix A is invertible.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Matrix determinant lemma」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|